Bài 13: Hỗn số. Số thập phân. Phần trăm

NA

Chứng tỏ rằng :

(1+\(\dfrac{1}{3}\)+\(\dfrac{1}{5}\)+...+\(\dfrac{1}{99}\)) - (\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{6}\)+...+\(\dfrac{1}{100}\)) = \(\dfrac{1}{51}\)+ \(\dfrac{1}{52}\)+ \(\dfrac{1}{53}\)+ ...+ \(\dfrac{1}{100}\)

NH
27 tháng 3 2018 lúc 21:43

\(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+.....+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.....+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{50}\right)\)

\(=\dfrac{1}{51}+\dfrac{1}{52}+......+\dfrac{1}{100}\)

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
QD
Xem chi tiết
DN
Xem chi tiết
SK
Xem chi tiết
AA
Xem chi tiết
SK
Xem chi tiết
LK
Xem chi tiết