Ôn tập toán 6

HM

chứng tỏ B = \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}< 6\)

NH
30 tháng 4 2017 lúc 23:47

Ta có :

\(B=1+\dfrac{1}{2}+\dfrac{1}{3}+........+\dfrac{1}{63}\)

Ta thấy :

\(1=1\)

\(\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{1}{1+1}+\dfrac{1}{1+2}< \dfrac{2}{1+1}=\dfrac{2}{2}=1\)

\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}=\dfrac{1}{3+1}+\dfrac{1}{3+2}+\dfrac{1}{3+3}+\dfrac{1}{3+4}< \dfrac{4}{3+1}=\dfrac{4}{4}=1\)

\(\dfrac{1}{8}+\dfrac{1}{9}+...+\dfrac{1}{15}=\dfrac{1}{7+1}+\dfrac{1}{7+2}+....+\dfrac{1}{7+8}< \dfrac{8}{7+1}=\dfrac{8}{8}=1\)

\(\dfrac{1}{16}+\dfrac{1}{17}+...+\dfrac{1}{31}=\dfrac{1}{15+1}+\dfrac{1}{15+2}+...+\dfrac{1}{15+16}< \dfrac{16}{15+1}=\dfrac{16}{16}=1\)

\(\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{63}=\dfrac{1}{31+1}+\dfrac{1}{31+2}+...+\dfrac{1}{31+32}< \dfrac{32}{31+1}=\dfrac{32}{32}=1\)

\(\Rightarrow B< 1+1+....+1\) (\(6\) số 1)

\(\Rightarrow B>6\rightarrowđpcm\)

Bình luận (0)

Các câu hỏi tương tự
KV
Xem chi tiết
LT
Xem chi tiết
NQ
Xem chi tiết
TL
Xem chi tiết
PM
Xem chi tiết
NA
Xem chi tiết
CV
Xem chi tiết
TH
Xem chi tiết