Ôn tập toán 6

CV

Chứng tỏ rằng : \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)

KL
3 tháng 8 2017 lúc 21:59

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

=> \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{100^2}\) < \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ...+ \(\dfrac{1}{99.100}\)
Ta có : \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

= 1 - \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

= 1 - \(\dfrac{1}{100}=\dfrac{99}{100}< 1\)

=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)

=> đpcm
@Cuber Việt

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
NT
Xem chi tiết
TQ
Xem chi tiết
TM
Xem chi tiết
KL
Xem chi tiết
KK
Xem chi tiết
TD
Xem chi tiết
NL
Xem chi tiết