Bài 1. Bất đẳng thức

HM

Chứng minh:

a. \(\frac{1}{{1\,.\,2}} + \frac{1}{{2\,.\,3}} + \frac{1}{{3\,.\,4}} < {a^2} + \frac{4}{5}\) với \(a \ne 0\);

b. \(2m + 4 > 2n + 3\)với \(m > n\).

HM
29 tháng 3 2024 lúc 17:49

a. Ta có: \(\frac{1}{{1\,.\,2}} + \frac{1}{{2\,.\,3}} + \frac{1}{{3\,.\,4}} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} = 1 - \frac{1}{4} = \frac{4}{5}\)

Mà \({a^2} > 0\) nên \(\frac{4}{5} < {a^2} + \frac{4}{5}\).

Vậy \(\frac{1}{{1\,.\,2}} + \frac{1}{{2\,.\,3}} + \frac{1}{{3\,.\,4}} < {a^2} + \frac{4}{5}\) với \(a \ne 0\).

b. Ta có: \(m > n\) nên \(2m > 2n\). Vậy \(2m + 3 > 2n + 3\).

Mà \(2m + 4 > 2m + 3\) nên \(2m + 4 > 2n + 3\).

Vậy \(2m + 4 > 2n + 3\) với \(m > n\).

Bình luận (0)