\(A=2^1+2^2+...+2^{2010}\)
\(=\left(2^1+2^2\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(=2^1\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=2^1\cdot3+...+2^{2009}\cdot3\)
\(=3\left(2^1+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+...+2^{2010}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(=2^1\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=2^1\cdot7+...+2^{2008}\cdot7\)
\(=7\left(2^1+...+2^{2008}\right)⋮7\)
Đúng 0
Bình luận (0)