Ôn tập toán 7

H24

Chứng minh rằng:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\)

TA
21 tháng 8 2016 lúc 19:58

Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{2^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=1-\frac{1}{10^2}< 1\)

\(\RightarrowĐPCM\)

Bình luận (4)
TA
21 tháng 8 2016 lúc 19:55

- Đợi tí

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
LV
Xem chi tiết
TD
Xem chi tiết
NM
Xem chi tiết
NV
Xem chi tiết
NN
Xem chi tiết