Đại số lớp 7

DQ

chứng minh rằng : s= \(\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-......+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+....+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)

NC
6 tháng 4 2017 lúc 9:31

4S=\(\dfrac{4}{2^2}-\dfrac{4}{2^4}+\dfrac{4}{2^6}-...+\dfrac{4}{2^{4n-2}}-\dfrac{4}{2^{4n}}+...+\dfrac{4}{2^{2002}}-\dfrac{4}{2^{2004}}\)

4S=1-\(\dfrac{1}{2^2}+\dfrac{1}{2^4}-,...-\dfrac{1}{2^{2002}}\)

4S+S=1-\(\dfrac{1}{2^{2004}}\)

5S=\(\dfrac{2^{2004}-1}{2^{2004}}\)<1

\(\Rightarrow\)5S<1 hay S<\(\dfrac{1}{5}\)=0,2(đpcm)

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
LL
Xem chi tiết
DQ
Xem chi tiết
TK
Xem chi tiết
TG
Xem chi tiết
HT
Xem chi tiết
DT
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết