Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng :
\(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}=\dfrac{3}{2}\overrightarrow{MO}\)
Cho tam giác ABC. Gọi M, N, P là những điểm được xác định như sau :
\(\overrightarrow{MB}=3\overrightarrow{MC};\overrightarrow{NC}=3\overrightarrow{NA};\overrightarrow{PA}=3\overrightarrow{PB}\)
a) Chứng minh \(2\overrightarrow{OM}=3\overrightarrow{OC}-\overrightarrow{OB}\) với mọi điểm O
b) Chứng minh hai tam giác ABC và MNP có cùng trọng tâm
Cho hình bình hành ABCD. Gọi E là điểm thỏa mãn 4 \(\overrightarrow{DE}\) = \(\overrightarrow{DC}\) và G là trọng tâm tam giác ABE. Đường thẳng AG cắt BC tại F. Biểu diễn \(\overrightarrow{AG}\) theo \(\overrightarrow{AB}\) , \(\overrightarrow{AD}\) và tính tỉ số \(\dfrac{BF}{BC}\)
Cho tam giác ABC có G là trọng tâm. I là trung điểm của đoạn thẳng BC. Đẳng thức nào sau đúng ?
a) \(\overrightarrow{GA}=2\overrightarrow{GI}\)
b) \(\overrightarrow{IG}=-\dfrac{1}{3}\overrightarrow{IA}\)
c) \(\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{GI}\)
d) \(\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GA}\)
Cho A(1;3); B(2;-4); C(-3;5); D(-4;-5)
a) Tìm M sao cho \(2\overrightarrow{AM}+3\overrightarrow{AB}-4\overrightarrow{AC}=\overrightarrow{0}\)
b) Tìm D sao cho tứ giác ADIG là hình bình hành với G trọng tâm tam giác ABC, I trung điểm AC.
c) Tìm giao điểm của hai đoạn thẳng AB và CD
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD và DA. Chứng minh rằng :
a) \(\overrightarrow{MN}=\overrightarrow{QP}\)
b) \(\overrightarrow{MP}=\overrightarrow{MN}+\overrightarrow{MQ}\)
Cho hình thoi ABCD tâm O có AC = 8; BD = 6. Chọn hệ tọa độ \(\left(O;\overrightarrow{i};\overrightarrow{j}\right)\) sao cho \(\overrightarrow{i}\) và \(\overrightarrow{OC}\) cùng hướng, \(\overrightarrow{j}\) và \(\overrightarrow{OB}\) cùng hướng.
a) Tìm tọa độ các đỉnh của hình thoi
b) Tìm tọa độ trung điểm I của BC và trọng tâm của tam giác ABC
c) Tìm tọa độ điểm đối xứng I' của I qua tâm O. Chứng minh A, I', D thẳng hàng
d) Tìm tọa độ của vectơ \(\overrightarrow{AC},\overrightarrow{BD},\overrightarrow{BC}\)
Cho tam giác ABC với BC=a, CA=b, AB=c. I là tâm đường tròn nội tiếp.
a) Chứng minh \(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\overrightarrow{0}\)
b)Kéo dài IA,IB,IC về phía A,B,C và trên đó lấy A',B',C' sao cho AA'=a.IA, BB'=b.IB, CC'=c.IC. Chứng minh hai tam giác ABC và A'B'C' có cùng trọng tâm
Cho tam giác ABC và một điểm M tùy ý. Chứng minh rằng vectơ \(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\) không phụ thuộc vào vị trí của điểm M. Hãy xác định điểm D sao cho \(\overrightarrow{CD}=\overrightarrow{v}\) ?