Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2+a^2+b^2\ge a^2+b^2+2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge1\)
\(\Leftrightarrow a^2+b^2\ge\dfrac{1}{2}\)
=> ĐPCM
Ta có: a + b = 1
<=> \(\left(a+b\right)^2=1\)
<=> \(a^2+2ab+b^2=1\) (1)
Lại có: \(\left(a-b\right)^2\ge0\)
<=> \(a^2-2ab+b^2\ge0\) (2)
Cộng (1) và (2) vế theo vế ta được:
\(2a^2+2b^2\ge1\)
<=>\(2\left(a^2+b^2\right)\ge1\)
\(\Leftrightarrow a^2+b^2\ge\dfrac{1}{2}\) (đpcm)