Violympic toán 8

H24

Chứng minh rằng:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz=\left(x+y+z\right)\left(xy+yz+zx\right)\)

KB
6 tháng 9 2018 lúc 20:15

Ta có :

\(VT=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)

\(=\left(xy+y^2+xz+yz\right)\left(z+x\right)+xyz\)

\(=xyz+y^2z+xz^2+yz^2+x^2y+y^2x+x^2z+xyz+xyz\)

\(=\left(x^2y+xyz+x^2z\right)+\left(y^2x+y^2z+xyz\right)+\left(xyz+z^2y+z^2x\right)\)\(=x\left(xy+yz+zx\right)+y\left(xy+yz+zx\right)+z\left(xy+yz+zx\right)\)

\(=\left(x+y+z\right)\left(xy+yz+zx\right)=VP\)

\(\left(đpcm\right)\)

:D

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
MK
Xem chi tiết
LH
Xem chi tiết
LC
Xem chi tiết
RC
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
MN
Xem chi tiết