Cho \(\left|a-c\right|< 3,\left|b-c\right|< 2\) . Chứng minh rằng \(\left|a-b\right|< 5\)
Với a,b,c là số dương chứng minh rằng :
a, \(\left(a+b\right)\times\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
b, \(\left(a+b+c\right)\times\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh: \(\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)
Cho các số nguyên dương a,b,c,d và \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng: \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}=\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-d^{2017}\right)^{2016}}\)
Chứng minh rằng: \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+.................+\frac{4031}{\left(2015.2016\right)^2}< 1\)
cho \(\frac{a}{b}=\frac{c}{d}\left(b,c,d\ne0;c-2d\ne0\right)\)
chứng minh rằng \(\frac{\left(a-2b^4\right)}{\left(c-2d^4\right)}=\frac{a^4+2017b^4}{c^4+2017d^a}\)
Cho x , y thuộc Q . Chứng tỏ rằng : \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Chứng minh nếu: \(a.\left(y+z\right)=b.\left(z+x\right)=c.\left(x+y\right)\). Trong đó a,b,c,d khác nhau và khác 0 thì ta có: \(\frac{y-z}{a.\left(b-c\right)}=\frac{z-x}{b.\left(c-a\right)}=\frac{x-y}{c.\left(a-b\right)}\)
Chứng minh đẳng thức:
a)\(\dfrac{1}{a\left(a+1\right)}=\dfrac{1}{a}-\dfrac{1}{a+1}\)
b)\(\dfrac{2}{a\left(a+1\right)\left(a+2\right)}=\dfrac{1}{a\left(a+1\right)}-\dfrac{1}{\left(a+1\right)\left(a+2\right)}\)