Tham khảo:
Đặt t = -s trong tích phân:
Ta được:
Tham khảo:
Đặt t = -s trong tích phân:
Ta được:
Biết f(x)=x^2 là một nguyên hàm của hàm số f(x) trên R giá trị của \(\int\limits^2_1\left[2+f\left(x\right)\right]dx\) bằng
A. 5
B. 3
C. \(\dfrac{13}{3}\)
D. \(\dfrac{7}{3}\)
Cho hàm số f(x) liên tục trên R và \(\int\limits^6_2f\left(x\right)dx=6\). Tính tích phân I = \(\int\limits^2_0f\left(2x+2\right)dx\)
Giả sử hàm số \(f\left(x\right)\) liên tục trên đoạn \(\left[-a;a\right]\)
Chứng minh rằng :
\(\int\limits^a_{-a}f\left(x\right)dx=\left\{{}\begin{matrix}2\int\limits^a_0f\left(x\right)dx;nếuflàhàmchẵn\\0;nếuflàhàmlẻ\end{matrix}\right.\)
Áp dụng để tính \(\int\limits^2_{-2}\ln\left(x+\sqrt{1+x^2}\right)dx\)
Cho h/s f(x) liên tục và x/đ trên [-1 ; \(+\infty\)] và t/m : \(f\left(x+1\right)+3f\left(3x+2\right)-4f\left(4x+1\right)-f\left(2^x\right)=\dfrac{3}{\sqrt{x+1}+\sqrt{x+2}}\forall x\in\left[-1;+\infty\right]\)
Tính \(\int\limits^2_1\dfrac{f\left(x\right)}{x}dx\) = ?
1, Cho hàm số f(x) liên tục , có đạo hàm trên R thỏa mãn 2f(3)-f(0)=18 và \(\int\limits^3_0\left(f'\left(x\right)+1\right)\sqrt{x+1}dx=\frac{302}{15}\). Tính tích phân \(I=\int\limits^3_0\frac{f\left(x\right)dx}{\sqrt{x+1}}\)
2, Cho hàm số f(x) liên tục , có đạo hàm trên đoạn [1;3] thỏa mãn f(3)=f(1)=3 và \(\int\limits^3_1\frac{xf'\left(x\right)}{x+1}dx=0\). Tính tích phân \(I=\int\limits^3_1\frac{f\left(x\right)+lnx}{\left(x+1\right)^2}dx\)
Giả sử hàm số \(f\left(x\right)\) liên tục trên đoạn \(\left[a;b\right]\). Chứng minh rằng :
\(\int\limits^{\dfrac{\pi}{2}}_0f\left(\sin x\right)dx=\int\limits^{\dfrac{\pi}{2}}_0f\left(\cos x\right)dx\)
chứng minh:
\(\int\limits^1_0\dfrac{ln\left(x+\sqrt{1-x^2}\right)}{x}dx=\dfrac{3}{4}\int\limits\dfrac{ln\left(1+x\right)}{x}^1_0dx\)
Tính các tích phân sau :
a) \(\int\limits^1_0\left(y^3+3y^2-2\right)dy\)
b) \(\int\limits^4_1\left(t+\dfrac{1}{\sqrt{t}}-\dfrac{1}{t^2}\right)dt\)
c) \(\int\limits^{\dfrac{\pi}{2}}_0\left(2\cos x-\sin2x\right)dx\)
d) \(\int\limits^1_0\left(3^s-2^s\right)^2ds\)
e) \(\int\limits^{\dfrac{\pi}{3}}_0\cos3xdx+\int\limits^{\dfrac{3\pi}{2}}_0\cos3xdx+\int\limits^{\dfrac{5\pi}{2}}_{\dfrac{3\pi}{2}}\cos3xdx\)
g) \(\int\limits^3_0\left|x^2-x-2\right|dx\)
h) \(\int\limits^{\dfrac{5\pi}{4}}_{\pi}\dfrac{\sin x-\cos x}{\sqrt{1+\sin2x}}dx\)
i) \(\int\limits^4_0\dfrac{4x-1}{\sqrt{2x+1}+2}dx\)
1, Cho hàm số f(x) liên tục trên đoạn \([\frac{2}{3};1]\) và thỏa mãn \(2f\left(x\right)+3f\left(\frac{2}{3x}\right)=5x\) với \(\forall x\in\left[\frac{2}{3};1\right]\). Tính tích phân \(I=\int\limits^1_{\frac{2}{3}}\frac{f\left(x\right)}{x}dx\)
2, Cho hàm số f(x) liên tục trên đoạn [0,2] và thoản mãn \(3f\left(x\right)-4f\left(2-x\right)=-x^2-12x+16\) với \(\forall x\in\left[0;2\right]\). Tính tích phân \(I=\int\limits^2_0f\left(x\right)dx\)
3, Cho hàm số f(x) liên tục trên R và thỏa mãn \(f\left(x\right)=4xf\left(x^2\right)+2x+1\) với \(\forall x\in R\) . Tính tích phân \(I=\int\limits^1_0f\left(x\right)dx\)