Violympic toán 6

NY

chứng minh rằng

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}\)<1

PA
31 tháng 3 2019 lúc 19:47

Ta có

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{2012^2}< \frac{1}{2011.2012}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)

= 1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2011}-\frac{1}{2012}\)

=1-\(\frac{1}{2012}\)=\(\frac{2011}{2012}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2012^2}< 1\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NN
Xem chi tiết
NS
Xem chi tiết
MN
Xem chi tiết
TD
Xem chi tiết
PD
Xem chi tiết
TT
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết