cho hàm số y=f(x)=\(\dfrac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}\) có đồ thị là \(\left(C_m\right)\) (m là tham số ) số giá trị của m để đồ thị \(\left(C_m\right)\) nhận trục Oy làm trục đối xứng
Chứng minh rằng đồ thị hàm số y = \(x+2-\frac{1}{x-1}\) nhận I(1;3) làm tâm đối xứng.
Tìm các tham số b,c sao cho hàm số y=x²+bx+c có trục đối xứng là x=2 và đồ thị của nó cắt trục tung tại điểm có tung độ là 6?
Cho hàm số y= /x+1/+\(\sqrt{x^2-4x+4}\)
a) Vẽ đồ thị hàm số
b) Từ đồ thị hàm số suy ra Min
Giúp em với mn
a, Lập bảng biến thiên, vẽ đồ thị (P) của hàm số : y = - x^2 + 4x - 3
b, Dựa vào đồ thị, hãy:
+ Tìm x để y > 0 ; y < 0;
+ Tìm max, min của hàm số trên đoạn [0;4].
+ Biện luận theo m số nghiệm của pt x^2 - 4x = m
+Tìm k để pt -x^2 + 4x = k có nghiệm thỏa mãn [-1;3]
Cho (P) y= x^2 + bx +c a) xác định P biết P nhận I(1;2) y= ax^2 +bx+c làm đỉnh. Xét sự biến thiên và vẽ đồ thị P b) xác định P biết P cắt trục tung tại điểm có tung độ=2 và nhận đồ thị x=-1 làm trục đối xứng
1 . Tìm m để đồ thị hàm số
a. f( x ) = x3 + ( m + 1 ) x2 + ( 2m - 1 ) x + m2 - 1 nhận O làm tâm đối xứng
b. f( x ) = x4 + ( m2 - 4m + 3 ) x3 + ( 2m + 5 ) x2 + ( m2 - 9 ) x + 5 nhận Oy làm trục đối xứng
y=-x^2+2x+3 có đồ thị là (p)
a)lập bảng biến thiên và vẽ đồ thị (p)của hàm số đã cho
b)tìm tọa độ các giao điểm của đồ thị (p) với đường thẳng y=4x-5
Tịnh tiến đồ thị hàm số y = x2 + 1 liên tiếp sang phải hai đơn vị và xuống dưới một đơn vị ta được đồ thị của hàm số nào?
A. y = x2 + 4x + 6 B, y = x2 - 4x + 6
C. y = x2 + 4x + 4 D. y = x2 - 4x + 4
Mong mọi người giúp đỡ ạ