Chứng minh rằng : \(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}< 1\)
Chứng minh rằng:
\(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
Chứng minh rằng
\(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
a, cho A = \(\dfrac{\sqrt{x+1}}{\sqrt{x-1}}\). chứng minh vs x = \(\dfrac{16}{9}\) và x = \(\dfrac{25}{9}\) thì A có giá trị là 1 số nguyên
1,\(\dfrac{3}{16}\)- ( x - \(\dfrac{5}{4}\) ) - ( \(\dfrac{3}{4}\) + \(\dfrac{-7}{8}\) - 1 ) = \(2\dfrac{1}{2}\)
2,\(\dfrac{1}{2}\) . ( \(\dfrac{1}{6}\) - \(\dfrac{9}{10}\) ) = \(\dfrac{1}{5}\) - x + ( \(\dfrac{1}{15}\) - \(\dfrac{-1}{5}\) )
Giúp mik nhanh với ạ
Cho biểu thức
\(M=\dfrac{1}{5}+\left(\dfrac{1}{5}\right)^2+\left(\dfrac{1}{5}\right)^3+...+\left(\dfrac{1}{5}\right)^{49}+\left(\dfrac{1}{5}\right)^{50}\)
Chứng minh rằng \(M< \dfrac{1}{4}\)
\(Câu 1) \dfrac {15} {34} + \dfrac {7} {21} + \dfrac {19} {34}-1\dfrac {15} {17}+\dfrac {3} {5} Câu 2) \dfrac {(5)^{4}.(20)^{4}} {(24)^{4}.45}\)
Chứng minh rằng:
\(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}< \dfrac{1}{50}\)
\(15\dfrac{1}{5}:\left(\dfrac{-5}{7}\right)-25\dfrac{1}{5}\cdot\left(\dfrac{-7}{5}\right)\)