Phép nhân và phép chia các đa thức

H24

Chứng minh rằng các biểu thức sau có giá trị dương với mọi giá trị của x

1,A=x2+4x+6

2,B=x2+x+1

3,C=2x2+4x+3

4,D=4x2+4x+2

5,K=4x2+3x+2

6,L=2x2+3x+4

Nhanh nha!Thank!

DH
21 tháng 6 2017 lúc 8:35

a, \(x^2+4x+6\)

\(=x^2+2x+2x+4+2\)

\(=\left(x^2+2x\right)+\left(2x+4\right)+2\)

\(=x.\left(x+2\right)+2.\left(x+2\right)+2\)

\(=\left(x+2\right)^2+2\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+2\ge2>0\)

Vậy......

b, \(x^2+x+1\)

\(=x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x^2+\dfrac{1}{2}x\right)+\left(\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

Vậy......

c, \(2x^2+4x+3\)

\(=2x^2+2x+2x+2+1\)

\(=\left(2x^2+2x\right)+\left(2x+2\right)+1\)

\(=2x.\left(x+1\right)+2.\left(x+1\right)+1\)

\(=2\left(x+1\right)^2+1\)

Với mọi giá trị của \(x\in R\) ta có:

\(2\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)

Vậy......

Mấy câu còn lại làm tương tự!

Làm theo cách " Giữ nguyên hạng tử bậc hai chia đôi hạng tử bậc nhất cân bằng hệ số để đạt được tỉ lệ thức "

Chúc bạn học tốt!!!

Bình luận (0)
NN
21 tháng 6 2017 lúc 8:37

1, \(x^2+4x+6=\left(x+2\right)^2+2\ge2\)

...

2, \(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

...

3,\(C=2x^2+4x+3=2\left(x^2+2x+1\right)+1\ge1\)

...

\(4,D=4x^2+4x+2=\left(2x+1\right)^2+1\ge1\)

...

\(5,K=4x^2+3x+2=4\left(x^2+\dfrac{3}{4}x+\dfrac{1}{2}\right)=4\left(x+2.x\dfrac{3}{8}+\dfrac{9}{64}\right)+\dfrac{23}{16}\ge\dfrac{23}{16}\)

...

\(6,L=2x^2+3x+4=2\left(x^2+\dfrac{3}{2}x+2\right)=2\left(x^2+2.x.\dfrac{3}{4}+\dfrac{9}{16}\right)+\dfrac{23}{8}\ge\dfrac{23}{8}\)

Bình luận (0)

Các câu hỏi tương tự
LP
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
PT
Xem chi tiết
LR
Xem chi tiết
LP
Xem chi tiết
HN
Xem chi tiết
NA
Xem chi tiết
PB
Xem chi tiết