Violympic toán 8

H24

Chứng minh rằng:

a4+b4+2 \(\ge\) 4ab

ND
31 tháng 3 2018 lúc 21:09

\(a^4+b^4+2\ge4ab\)

\(\Leftrightarrow a^4-2a^2b^2+b^4+2a^2b^2-4ab+2\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+2\left(ab-1\right)^2\ge0^{\left(1\right)}\)

\(^{\left(1\right)}\) đúng vậy ta có đpcm

Bình luận (0)
NH
31 tháng 3 2018 lúc 21:12

C1: a^4 + b^4 + 2 ≥ 4ab
<=> a^4 - 2a^2 + 1 + b^2 - 2b^2 + 1 + 2a^2 + 2b^2 + 4ab
<=> (a^2 - 1)^2 + (b^2 -1)^2 + 2( a^2 -2ab+ b^2)
<=> (a^2 -1)^2 + (b^2 -1)^2 + 2(a-b) >= 0 (với mọi a, b)
Vậy nên a^4 + b^4 + 2 ≥ 4ab (với mọi số nguyên a, b)

C2:Xét (a + b)^2 - 4ab
= a^2 + 2ab +b^2 - 4ab = a^2 - 2ab + b^2 = (a-b)^2 >= 0
=> (a+b)^2 >= 4ab
Mà ta có:
a^4 + b^4 + 2 - (a+b)^2
= a^4 + b^4 +2 -a^2 - b^2 - 2ab
=a^4 - 2a^2 + 1 + a^2 + b^4 - 2b^2 +1 + b^2 - 2ab
= (a^2 - 1)^2 + (b^2 - 1)^2 + (a-b)^2 >= 0
=> a^4 + b^4 +2 >= (a+b)^2
=> a^4 + b^4 +2 >= 4ab

bạn thấy cánh nào dễ hơn thì chọn nha

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
DT
Xem chi tiết
KM
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
BC
Xem chi tiết
DL
Xem chi tiết