Violympic toán 8

DH

chứng minh hằng đẳng thức:

1, \(\left(x^2-xy+y^2\right)\left(x+y\right)=x^3+y^3\)

2, \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)

3, \(x^2+2x+1=\left(x+1\right)^2\)

4,\(x^3-y^3=(x-y)(x^2+xy+y^2)\)

TP
24 tháng 7 2019 lúc 16:45

1) \(VT=x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3=VP\)

2) \(VP=x^2+xy-xy-y^2=x^2-y^2=VT\)

3) \(VP=x^2+2\cdot x\cdot1+1=x^2+2x+1=VT\)

4) \(VP=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3=VT\)

Bình luận (4)
H24
24 tháng 7 2019 lúc 16:51

1, \(\left(x^2-xy+y^2\right)\left(x+y\right)=x^3+y^3\\ x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3\\ x^3+y^3=x^3+y^3\left(đúng\right)\)Vậy ta được đpcm

2, \(x^2-y^2=\left(x-y\right)\left(x+y\right)\\ x^2-y^2=x^2+xy-xy-y^2\\ x^2-y^2=x^2-y^2\left(đúng\right)\)Vậy ta được đpcm

3, \(x^2+2x+1=\left(x+1\right)^2\\ x^2+2x+1=\left(x+1\right)\left(x+1\right)\\ x^2+2x+1=x^2+x+x+1\\ x^2+2x+1=x^2+2x+1\left(đúng\right)\)Vậy ta được đpcm

4, \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\\ x^3-y^3=x^3+x^2y+xy^2-x^2y-xy^2-y^3\\ x^3-y^3=x^3-y^3\left(đúng\right)\)Vậy ta được đpcm

Bình luận (2)

Các câu hỏi tương tự
PT
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết
NS
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
BC
Xem chi tiết
DD
Xem chi tiết
MN
Xem chi tiết