Ta có:\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{50^2}\)<\(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+\(\frac{1}{3\cdot4}\)+...+\(\frac{1}{49\cdot50}\)
<1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)
<1-\(\frac{1}{50}\)<1
Nên \(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{50^2}\)<1
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}=S\)
Đặt S = \(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
Ta lại có: \(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};....;\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{50}=\frac{49}{50}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< S=\frac{49}{50}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1\) (đpcm)