Đại số lớp 7

ND

Cho \(\dfrac{a}{b}=\dfrac{c}{d}\left(b+d\ne0\right)\) . Chứng minh: \(\dfrac{4a^2+4c^2}{4b^2+4d^2}=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\)

TQ
18 tháng 5 2017 lúc 20:09

Đại số lớp 7

Trời tối nên chụp hơi mờ, bạn thông cảm ^^

Bình luận (0)
N2
18 tháng 5 2017 lúc 20:10

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Rightarrow\) a = bk ; c = dk

\(\Rightarrow\)\(\dfrac{4a^2+4c^2}{4b^2+4d^2}\)=\(\dfrac{4\left(bk\right)^2+4\left(dk\right)^2}{4b^2+4d^2}\)

=\(\dfrac{4b^2k^2+4d^2k^2}{4b^2+4d^2}\)=\(\dfrac{k^2\left(4b^2+4d^2\right)}{4b^2+4d^2}\)= k2 (1)

\(\Rightarrow\)\(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\)=\(\dfrac{\left(bk-dk\right)^2}{\left(b-d\right)^2}\)=\(\dfrac{[k\left(b-d\right)]^2}{\left(b-d\right)^2}\)

=\(\dfrac{k^2\left(b-d\right)^2}{\left(b-d\right)^2}\)= k2 (2)

Từ (1) và (2), suy ra:

\(\dfrac{4a^2+4c^2}{4b^2+4d^2}=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\) (đpcm)

Bình luận (4)
NT
18 tháng 5 2017 lúc 20:17

Cách 2:

Giải:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow k^2=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{4a^2+4c^2}{4b^2+4d^2}\) (1)

\(k=\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\Rightarrow k^2=\left(\dfrac{a-c}{b-d}\right)^2=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\) (2)

Từ (1), (2) \(\Rightarrow\dfrac{4a^2+4c^2}{4b^2+4d^2}=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\left(đpcm\right)\)

Vậy...

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
CP
Xem chi tiết
Xem chi tiết
PT
Xem chi tiết
PM
Xem chi tiết
NL
Xem chi tiết
NC
Xem chi tiết
KR
Xem chi tiết
YV
Xem chi tiết