Violympic toán 6

H24

CHỨNG MINH
  \(\dfrac{1.3+2}{2^{2^{ }}}\)+\(\dfrac{2.4+2}{3^2}\)+\(\dfrac{3.5+2}{4^2}\)+...+\(\dfrac{2008.2010+2}{2009^2}\)+\(\dfrac{2009.2011+2}{2010^2}\) < 2011

GIÚP TỚ ĐI MÀ :))

H24
5 tháng 4 2021 lúc 22:39

Trước hết ta chứng minh (a-1)(a+1) + 1 = a^2 (*)

Thật vậy VT = (a-1)(a+1)+1=(a-1)a + a-1 +1 = a^2-a+a=a^2 =VP 

Áp dụng (*) ta có:

\(A=\dfrac{1\cdot3+2}{2^2}+\dfrac{2\cdot4+2}{3^2}+...+\dfrac{2009\cdot2011+2}{2010^2}\\ =\dfrac{2^2+1}{2^2}+\dfrac{3^2+1}{3^2}+...+\dfrac{2010^2+1}{2010^2}=2009+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2010^2}\\ < 2009+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2009\cdot2010}\\ =2009+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{2009}-\dfrac{1}{2010}=2010-\dfrac{1}{2010}< 2020< 2011\)

Bình luận (0)

Các câu hỏi tương tự
SP
Xem chi tiết
XT
Xem chi tiết
NB
Xem chi tiết
HA
Xem chi tiết
KN
Xem chi tiết
SZ
Xem chi tiết
LA
Xem chi tiết
PH
Xem chi tiết
ND
Xem chi tiết