Chương I - Căn bậc hai. Căn bậc ba

VN

Chứng minh : \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+...+\dfrac{1}{2005\sqrt{2004}}< 2\)

TD
11 tháng 11 2017 lúc 22:06

\(\frac{1}{(n+1)\sqrt{n} }=\frac{\sqrt{n} }{n(n+1)}=\sqrt{n} (\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } )(\frac{1}{\sqrt{n} } +\frac{1}{\sqrt{n+1} } )=(1+\frac{\sqrt{n} }{\sqrt{n+1} } )(\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } <2(\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } )\)

Áp dụng BĐT vừa CM ta có

A< 2(1-\(\frac{1}{\sqrt{2} } +\frac{1}{\sqrt{2} } -\frac{1}{\sqrt{3} } +...+\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } \))<2(đpcm)

Bình luận (3)

Các câu hỏi tương tự
AP
Xem chi tiết
DV
Xem chi tiết
H24
Xem chi tiết
ZY
Xem chi tiết
QN
Xem chi tiết
TN
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết
LM
Xem chi tiết