Chứng minh bằng phản chứng : Giả sử có hữu hạn số nguyên tố, do đó ta có thể sắp xết các số này thành dãy : \(p_1< p_2< p_3< ...< p_n\)
Xét số \(p=p_1.p_2.p_3...p_n+1\) . Vì \(p>p_n\) nên p không thể là số nguyên tố. Vậy p là bội số của một số nguyên tố \(p_k\) nào đó, suy ra : \(1=p-p_1.p_2...p_k\Rightarrow1⋮p_k\Rightarrow p_k\le1\) (vô lý)
Vậy có vô hạn số nguyên tố.