Bất phương trình bậc nhất một ẩn

WY

chứng minh các BĐT:

a)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2;\)

b)\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

MS
12 tháng 4 2018 lúc 22:12

a) Áp dụng Cauchy-Schwarz:

\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)

b) Áp dụng AM-GM:

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2ac\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(a^2+b^2+c^2\ge ab+bc+ac\) (cm ở trên r nên khỏi cm lại đi)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2\)

Kết hợp 2 điều trên:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

Bình luận (0)
KK
12 tháng 4 2018 lúc 22:16

a)2(a2+b2) ≥ (a+b)2

⇔ 2a2+2b2 ≥ a2+2ab+b2

xét hiệu

⇔ 2a2+2b2-a2-2ab-b2 ≥ 0

⇔ a2-2ab+b2 ≥ 0

⇔ (a-b)2 ≥ 0 (luôn đúng )

=> đpcm

Bình luận (0)
ND
12 tháng 4 2018 lúc 22:38

a )2(a^2+b^2)\(\ge\)(a+b)^2\(\Leftrightarrow\)2a^2+2b^2\(\ge\)a^2+b^2+2ab

\(\Leftrightarrow\)2a^2+2b^2-a^2-b^2-2ab\(\ge\)0

\(\Leftrightarrow\)(a-b)^2\(\ge\)0 (2)

(2) đúng nên 1 đúng

b )

chứng minh vế 1 3(a^2+b^2+c^2)\(\ge\)(a+b+c)^2

\(\Leftrightarrow\)3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\(\ge\)0

\(\Leftrightarrow\)2a^2+2b^2+2c^2-2ab-2ac-2bc\(\ge\)0

\(\Leftrightarrow\)(a-b)^2+(b-c)^2+(c-a)^2\(\ge\)0 luôn đúng

chứng minh vế 2 (a+b+c)^2\(\ge\)3(ab+bc+ca)

\(\Leftrightarrow\)a^2+b^2+c^2-2ab-2ac-2bc\(\ge\)0

cm như trên suy ra đpcm

Bình luận (0)

Các câu hỏi tương tự
CW
Xem chi tiết
AT
Xem chi tiết
HL
Xem chi tiết
VQ
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
LA
Xem chi tiết