Violympic toán 7

NS

chứng minh biểu thức sau không thuộc vào y và x

a)A=\(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)

b)B=\(x\left(x^3+2x^2-3x+2\right)-\left(x^2+2x\right)x^2+3x\left(x-1\right)+x-12\)

NT
15 tháng 7 2020 lúc 10:07

a) Ta có: \(A=x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)

\(=2x^2+x-x^3-2x^2+x^3-x+3\)

\(=3\)

Vậy: Với mọi giá trị của x, A luôn 3

hay A không phụ thuộc vào x(đpcm)

b) Ta có: \(B=x\left(x^3+2x^2-3x+2\right)-\left(x^2+2x\right)x^2+3x\left(x-1\right)+x-12\)

\(=x^4+2x^3-3x^2+2x-x^4-2x^3+3x^2-3x+x-12\)

\(=-12\)

Vậy: Với mọi giá trị của x, B luôn bằng -12

hay B không phụ thuộc vào x(đpcm)

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
NS
Xem chi tiết
DH
Xem chi tiết
TV
Xem chi tiết
DH
Xem chi tiết
HD
Xem chi tiết
TV
Xem chi tiết
DS
Xem chi tiết
DA
Xem chi tiết