Sửa đề: Chứng minh \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
~ ~ ~
Áp dụng BĐT Cauchy Shwarz, ta có:
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\dfrac{\left(a+b+c\right)^4}{9}\)
Áp dụng BĐT Cauchy Shwarz và BĐT AM - GM, ta có:
(+) \(\left(1+1+1\right)\left(a^4+b^4+c^4\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3}\)
\(\ge\dfrac{\dfrac{\left(a+b+c\right)^4}{9}}{3}=\dfrac{\left(a+b+c\right)^3}{27}\times\left(a+b+c\right)\)
\(\ge\dfrac{\left(3\sqrt[3]{abc}\right)^3}{27}\times\left(a+b+c\right)=abc\left(a+b+c\right)\)
Dấu "=" xảy ra khi a = b = c
Đúng 0
Bình luận (0)