Chương I - Căn bậc hai. Căn bậc ba

2H

Chứng minh :

a) \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)

b) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

DM
16 tháng 7 2017 lúc 10:22

Câu a thì c/m được câu b đề yêu cầu gì thế.

a) Xét VP được :

\(\left(\sqrt{5}+2\right)^2\) sử dụng hàng đẳng thức số 1 :

\(\left(\sqrt{5}+2\right)^2=\sqrt{5}^2+2\cdot\sqrt{5}\cdot2+2^2=5+4\sqrt{5}+4=9+4\sqrt{5}=VT\)

Vậy \(\left(\sqrt{5}+2\right)^2=9+4\sqrt{5}\)

Bình luận (0)
H24
16 tháng 7 2017 lúc 10:23

a) \(\sqrt{9+4\sqrt{5}}=\left(\sqrt{5}+2\right)^2\)

Ta biến đổi vế phải :

\(VP=\left(\sqrt{5}+2\right)^2=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2\) = \(5+4\sqrt{5}+4=9+4\sqrt{5}=VT\)

=> Ta có VT= VP <=> VP = VT

b) Thiếu đề =.= sao làm

Bình luận (0)
NN
16 tháng 7 2017 lúc 10:29

b,

\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{4-2.2\sqrt{5}+5}-\sqrt{5}\)

\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)

\(=\left|2-\sqrt{5}\right|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}=-2\) ( 2 < \(\sqrt{5}\))

mấy bác tranh câu a e làm câu b

Bình luận (6)

Các câu hỏi tương tự
AQ
Xem chi tiết
NT
Xem chi tiết
NY
Xem chi tiết
TN
Xem chi tiết
HG
Xem chi tiết
DQ
Xem chi tiết
LL
Xem chi tiết
NT
Xem chi tiết
HC
Xem chi tiết