Gọi \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) + ... + \(\frac{1}{2^n}\) là A
Ta có :
\(\frac{1}{2^2}\)<\(\frac{1}{1.2}\)
\(\frac{1}{2^3}\)<\(\frac{1}{2.3}\)
\(\frac{1}{2^4}\)<\(\frac{1}{3.4}\)
....
\(\frac{1}{2^n}\)<\(\frac{1}{\text{(n - 1) . n}}\)
❄ Nên :
A < \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ... + \(\frac{1}{\text{(n - 1) . n}}\)
A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
A < \(1-\frac{1}{n}\) < 1
Vậy A < 1
\(\frac{1}{2^2}\)\(\frac{1}{2^2}\)