Violympic toán 7

H24

Cho\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

Chứng minh x,y,z tỉ lệ với 2,3,4

NH
8 tháng 11 2017 lúc 21:21

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Leftrightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12x-8y}{16}=0\\\dfrac{2z-4x}{3}=0\\\dfrac{4y-3z}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12x-8y=0\\2x-4z=0\\4y-3z=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

Bình luận (4)
HD
8 tháng 11 2017 lúc 22:21

Từ giả thiết \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{4}\)

\(\Rightarrow\dfrac{3xz-2yz}{4z}=\dfrac{2yz-4xy}{3y}=\dfrac{4xy-3xz}{4x}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3xz-2yz}{4z}=\dfrac{2yz-4xy}{3y}=\dfrac{4xy-3xz}{4x}=\dfrac{3xz-2yz+2yz-4xy+4xy-3xz}{4z+3y+4x}=\dfrac{0}{4z+3y+4x}=0\)

\(\Rightarrow3xz=2yz=4xy\)

\(\Rightarrow\dfrac{3xyz}{y}=\dfrac{2xyz}{x}=\dfrac{4xyz}{z}\)

\(\Rightarrow\dfrac{3}{y}=\dfrac{2}{x}=\dfrac{4}{z}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

Chúc bạn học tốt!

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
GP
Xem chi tiết
PA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
QH
Xem chi tiết
LA
Xem chi tiết
XT
Xem chi tiết