Cho biểu thức:
A= (\(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\)) : (\(\dfrac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\))
a) Rút gọn A
b) Tính A khi x = \(\dfrac{3-2\sqrt{2}}{4}\)
p=(\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\)):(\(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\))
rút gọn và tìm các giá trị để p>0
Cho phân thức A = \(\dfrac{3}{X+3}\)+\(\dfrac{1}{X-3}\)-\(\dfrac{18}{9-X^2}\)
A) tìm điều kiện của x để giá trị của biểu thức A xác định
b) rút gọn A
Bạn nào giúp mình giải đề này nhé !!!
Câu 1 ( 3,0 điểm ) :
a) Đơn giản biểu thức A = \(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\).
b) Cho ba số nguyên dương liên tiếp x, y và z thỏa mãn
\(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}+\dfrac{y}{x}+\dfrac{x}{z}+\dfrac{z}{y}\)là một số nguyên. Tính giá trị của x + y + z .
Câu 2 ( 4,0 điểm ) :
a) Giải phương trình 3x2 + 6x - 3 = \(\sqrt{\dfrac{x+7}{3}}\).
b) Giải hệ phương trình
\(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}=\dfrac{9}{y}\\x+y-\dfrac{4}{y}=\dfrac{4x}{y^2}\end{matrix}\right.\).
Câu 3 ( 3,0 điểm ) :
Cho tam giác ABC vuông tại A. Đường cao AH = \(\dfrac{12a}{5}\); BC = 5a . Tính hai cạnh góc vuông theo a .
Câu 4 ( 4,0 điểm ) :
a) Tìm giá trị nhỏ nhất của \(P=x-\sqrt{x-2017}\).
b) Cho a, b,c là các số thực dương thỏa mãn a + b + c = 1
Chứng minh rằng :
\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{15}{4}\).
Câu 5 ( 4,0 điểm ) :
a) Cho ABC là một tam giác cân tại A. Gọi X, Y là các điểm lần lượt thuộc các cạnh BC và AC sao cho XY song song với AB.Gọi I là tâm đường tròn ngoại tiếp tam giác CXY và E là trung điểm của BY. Chứng minh rằng \(\widehat{AEI}=90^o\).
b) Cho tam giác đều ABC nội tiếp đường tròn (O), M là điểm trên cung nhỏ BC, MA cắt BC tại D.
Chứng minh rằng MA = MB + MC và \(\dfrac{1}{MD}=\dfrac{1}{MB}+\dfrac{1}{MC}\).
cho x,y,z>0 thỏa mãn xy+yz+zx=1
tìm max A= \(\dfrac{x}{x+\sqrt{1+x^2}}\) + \(\dfrac{y}{y+\sqrt{1+y^2}}\) +\(\dfrac{z}{z+\sqrt{1+z^2}}\)
Cho A= \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{4026}\) , B = \(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+....+\dfrac{1}{4025}\). So sánh \(\dfrac{A}{B}\) với \(1\dfrac{2013}{2014}\)
Cho R={3k-1| k∈R, -5≤ k ≤5}, S={x ∈R| \(3< \left|x\right|\le\dfrac{19}{2}\)}, T= {x∈R| 2x2-4x+2=0}. Tính \(R\cap S,S\cup T\),R\S
thức hiện hiện mỗi phép tính sau bằng hai cách
a)\(3\dfrac{4}{9}+5\dfrac{1}{6}\), b,\(8\dfrac{1}{14}-6\dfrac{3}{7}\) c,\(7-3\dfrac{6}{7}\)
Tính:
\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}\)
Lẹ nha mấy chế!!!~.~