Ôn tập toán 7

TD

Cho\(A=1^3+2^3+3^3+...+100^3\)

\(B=1+2+3+...+100\)

CM: A chia hết cho B

PT
3 tháng 2 2017 lúc 20:32

Ta có:

\(B=\left(1+100\right)+\left(2+99\right)+...+\left(50+51\right)\)

\(=101.50\)

Để chứng minh \(A\) chia hết cho \(B\) ta chứng minh \(A\) chia hết cho 50 và 101

Ta có:

\(A=\left(13+1003\right)+\left(23+993\right)+...+\left(503+513\right)\)

\(=\left(1+100\right).\left(12+100+1002\right)+\left(2+99\right).\left(22+2.99+992\right)+...+\left(50+51\right).\left(502+50.51+512\right)\)

\(=101.\left(12+100+1002+22+2.99+992+...+502+50.51+512\right)\)

chia hết cho 101 ( 1 )

Lại có:

\(A=\left(13+993\right)+\left(23+983\right)+...+\left(503+1003\right)\)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 ( 2 )

Từ ( 1 ) và ( 2 ) suy ra: A chia hết cho 101 và 50 nên A chia hết cho B

Bình luận (0)
AD
3 tháng 2 2017 lúc 20:47

tính luôn kết quả cho dễ CM

Ta có:

(n-1)n(n+1)=n3 - n

\(\Rightarrow\) n3 = n+(n-1)n(n+1)

áp dụng vào A ta được:

\(A=1+2+1.2.3+3+2.3.4+......+100+99.100.101\)

\(=\left(1+2+3+....+100\right)+\left(1.2.3+2.3.4+....+99.100.101\right)\)

\(=5050+101989800=101994850\left(1\right)\)

Ta lại có:

\(B=1+2+3+....+100\)

\(=101+101+101+.....+101\) (50 số hạng)

\(=101.50=5050\left(2\right)\)

từ (1) và (2) ta có:

\(101994850:5050=20197\)

\(\Rightarrow\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
CG
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
TM
Xem chi tiết
TH
Xem chi tiết
NB
Xem chi tiết
NT
Xem chi tiết
TG
Xem chi tiết