Cho: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\) và x+y+z=xyz (x, y, z khác 0). CM: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=2\)
CMR với x, y, z khác 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\) thì hai trong ba số x, y, z đối nhau
Áp dụng chứng minh : \(\dfrac{1}{x^{2018}}+\dfrac{1}{y^{2018}}+\dfrac{1}{z^{2018}}=\dfrac{1}{x^{2018}+y^{2018}+z^{2018}}\)
Cho các số x, y, z dương thỏa mãn: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3\)
Cmr: \(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2y+z+x\right)^2}+\dfrac{1}{\left(2z+x+y\right)^2}\ge\dfrac{3}{16}\)
cho các số x,y,z thỏa mãn x+y+z=2018. Tính giá trị của biểu thức
A=(xy+yz+zx)(\(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) +\(\dfrac{1}{z}\)) -xyz (\(\dfrac{1}{x^2}\)+\(\dfrac{1}{y^2}\)+\(\dfrac{1}{z^2}\))
cho các số thực dương x,y,x thỏa mãn x+y≤z. CMR: \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge\dfrac{27}{2}\)
Cho các số dương x, y, z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
Cho các số dương x, y, z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
CHO xyz=1. TÍNH \(E=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2+\left(z+\dfrac{1}{z}\right)^2-\left(x+\dfrac{1}{x}\right)\left(x+\dfrac{1}{y}\right)\left(z+\dfrac{1}{z}\right)\)
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\) và biểu thức \(P=x+y^2+z^3\).
a/. CM: \(P\ge x+2y+3z-3\)
b/. tìm GTNN của P