Phép nhân và phép chia các đa thức

NN

\(Cho\) \(x,y,z>0\) thoả mãn \(x+y+z=2019.\)

Tìm giá trị nhỏ nhất của biểu thức : \(P=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\)

HH
17 tháng 6 2018 lúc 11:08

Giải:

Ta có:

\(P=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\)

\(\Leftrightarrow P=\dfrac{1}{2}\left[\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{zx}{y}\right)+\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\right]\)

Áp dụng BĐT AM-GM, có:

\(P=\dfrac{1}{2}\left[\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{zx}{y}\right)+\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\right]\ge\dfrac{1}{2}.\left(2\sqrt{\dfrac{xy}{z}.\dfrac{yz}{x}}+2\sqrt{\dfrac{yz}{x}.\dfrac{zx}{y}}+2\sqrt{\dfrac{zx}{y}.\dfrac{xy}{z}}\right)\)

\(\Leftrightarrow P\ge\sqrt{\dfrac{xy}{z}.\dfrac{yz}{x}}+\sqrt{\dfrac{yz}{x}.\dfrac{zx}{y}}+\sqrt{\dfrac{zx}{y}.\dfrac{xy}{z}}\)

\(\Leftrightarrow P\ge x+y+z\)

\(\Leftrightarrow P\ge2019\)

\(\Leftrightarrow P_{Min}=2019\)

\("="\Leftrightarrow x=y=z=\dfrac{2019}{3}\)

Vậy ...

Bình luận (0)

Các câu hỏi tương tự
YC
Xem chi tiết
YT
Xem chi tiết
NT
Xem chi tiết
LA
Xem chi tiết
H24
Xem chi tiết
HM
Xem chi tiết
NA
Xem chi tiết
VQ
Xem chi tiết
VQ
Xem chi tiết