Ôn tập toán 7

NT

Cho x;y;z là các số thực thỏa mãn:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

Tính giá trị của biểu thức A = 2016.x+y2017+z2017

NT
6 tháng 6 2017 lúc 8:23

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(=\dfrac{1}{x+y+z}\)

\(\Rightarrow\dfrac{1}{x+y+z}=2\)\(x+y+z=\dfrac{1}{2}\)

+) \(\dfrac{y+z+1}{x}=2\)

\(\Rightarrow y+z+1=2x\)

\(\Rightarrow x+y+z+1=3x\)

\(\Rightarrow3x=1+\dfrac{1}{2}\)

\(\Rightarrow3x=\dfrac{3}{2}\Rightarrow x=\dfrac{1}{2}\)

Tương tự như trên, ta tìm được \(y=\dfrac{5}{6},z=\dfrac{-5}{6}\)

Thay giá trị của x, y, z vào A ta được:

\(A=2016.\dfrac{1}{2}+\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\)

\(=1008\)

Vậy A = 1008

Bình luận (1)
LG
6 tháng 6 2017 lúc 8:26

undefined

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
YT
Xem chi tiết
HL
Xem chi tiết
VK
Xem chi tiết
NB
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
CV
Xem chi tiết
TB
Xem chi tiết