Violympic toán 8

NH

cho x,y,z là các số hữu tỉ thoả mãn \(\left(x-y+z\right)^2=x^2-y^2+z^2\).CMR:

\(\left(x-y+z\right)^n=x^n-y^n+z^n\)

KB
25 tháng 3 2019 lúc 20:26

Ta có : \(\left(x-y+z\right)^2=x^2-y^2+z^2\)

\(\Leftrightarrow x^2+y^2+z^2-2xy+2xz-2yz=x^2-y^2+z^2\)

\(\Leftrightarrow2y^2-2xy+2xz-2yz=0\)

\(\Leftrightarrow2y\left(y-z\right)-2x\left(y-z\right)=0\)

\(\Leftrightarrow2\left(y-x\right)\left(y-z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x\\y=z\end{matrix}\right.\)

Với x = y \(\Rightarrow\left(x-y+z\right)^n=z^n;x^n-y^n+z^n=z^n\)

\(\Rightarrow\left(x-y+z\right)^n=x^n-y^n+z^n\) ( 1 )

Với y = z \(\Rightarrow\left(x-y+z\right)^n=x^n;x^n-y^n+z^n=x^n\)

\(\Rightarrow\left(x-y+z\right)^n=x^n-y^n+z^n\) ( 2 )

Từ ( 1 ) ; ( 2 ) => ĐPCM

Bình luận (0)

Các câu hỏi tương tự
DF
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
VN
Xem chi tiết
NH
Xem chi tiết
VN
Xem chi tiết
DV
Xem chi tiết
DA
Xem chi tiết
BB
Xem chi tiết