Tương tự: https://hoc24.vn/hoi-dap/question/279767.html
Tương tự: https://hoc24.vn/hoi-dap/question/279767.html
Cho 3 số dương x,y,z thỏa mãn \(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=3\sqrt{xyz}\). Tính A=\(\left(1+\dfrac{\sqrt{x}}{\sqrt{y}}\right)\left(1+\dfrac{\sqrt{y}}{\sqrt{z}}\right)\left(1+\dfrac{\sqrt{z}}{\sqrt{x}}\right)\)
x,y,z>0.Prove that:
\(\dfrac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2z^2}+1}+\dfrac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y^2}}+\dfrac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\ge x+y+z+3\)
cho x,y,z là các số thực thỏa mãn \(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)=1\)
Tính giá trị biểu thức P=\(\dfrac{\sqrt{y}-\sqrt{z}}{x\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{z}-\sqrt{x}}{y\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{x}-\sqrt{y}}{z\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}\)
Cho 3 số thực x,y,z thỏa mãn \(x+y=\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)^2\)
Chứng minh: \(\dfrac{x+\left(\sqrt{x}-\sqrt{z}\right)^2}{y+\left(\sqrt{y}-\sqrt{z}\right)^2}=\dfrac{\sqrt{x}-\sqrt{z}}{\sqrt{y}-\sqrt{z}}\)
Cho các số thực x, y, z thỏa mãn \(7\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=6\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=2016\).
Tìm max: \(P=\dfrac{1}{\sqrt{3\left(2x^2+y^2\right)}}+\dfrac{1}{\sqrt{3\left(2y^2+z^2\right)}}+\dfrac{1}{\sqrt{3\left(2z^2+x^2\right)}}\)
cho x,y,z>0 và x+y+z=\(\sqrt{3}\)
tìm GTNN \(A=\dfrac{1}{\sqrt{x\left(y+2z\right)}}+\dfrac{1}{\sqrt{y\left(z+2x\right)}}+\dfrac{1}{\sqrt{z\left(x+2y\right)}}\)
Câu 1:
A=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
Rút gọn A
Câu 2:
A=\(\dfrac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}\) Biết tử số có 2016 dấu căn, mẫu số có 2015 dấu căn. Chứng minh A<\(\dfrac{1}{4}\)
Câu 3:Cho 3 số dương x, y, z thỏa măn điều kiện: xy+yz+xz=1
Tính A=\(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Mọi người làm nhanh nha, mai mình kt 1 tiết rồi
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\dfrac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\dfrac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)