Violympic toán 8

TD

Cho \(x,y\ge0tm:\) \(x^{2016}+y^{2016}=x^{2017}+y^{2017}=x^{2018}+y^{2018}\)

Tính \(A=x^{2019}+y^{2019}\)

AH
25 tháng 9 2018 lúc 23:23

Lời giải:

Từ điều kiện đề bài suy ra:

\(\left\{\begin{matrix} x^{2016}+y^{2016}-x^{2017}-y^{2017}=0\\ x^{2017}+y^{2017}-x^{2018}-y^{2018}=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x^{2016}(1-x)+y^{2016}(1-y)=0\\ x^{2017}(1-x)+y^{2017}(1-y)=0\end{matrix}\right.\)

\(\Rightarrow x^{2016}(1-x)(1-x)+y^{2016}(1-y)(1-y)=0\) (trử theo vế)

\(\Leftrightarrow x^{2016}(1-x)^2+y^{2016}(1-y)^2=0\)

Dễ thấy \(x^{2016}(1-x)^2; y^{2016}(1-y)^2\geq 0\) nên để tổng của chúng bằng $0$ thì:
\(x^{2016}(1-x)^2=y^{2016}(1-y)^2=0\)

\(\Rightarrow (x,y)=(0,1), (0,0), (1,1)\) và hoán vị của nó

Thử lại vào đk ban đầu thấy thỏa mãn

Do đó: \(A=x^{2019}+y^{2019}\in\left\{0; 1;2\right\}\)

Bình luận (0)
HP
25 tháng 9 2018 lúc 20:19

\(x^{2016}+y^{2016}=x^{2017}+y^{2017}=x^{2018}+y^{2018}\left(x,y\ge0\right)\)

\(\Rightarrow x=y=1\)

\(\Rightarrow A=1^{2019}+1^{2019}\)

\(\Rightarrow A=2\)

Bình luận (0)
NH
26 tháng 9 2018 lúc 9:53

{x2016+y2016−x2017−y2017=0x2017+y2017−x2018−y2018=0{x2016+y2016−x2017−y2017=0x2017+y2017−x2018−y2018=0

⇔{x2016(1−x)+y2016(1−y)=0x2017(1−x)+y2017(1−y)=0⇔{x2016(1−x)+y2016(1−y)=0x2017(1−x)+y2017(1−y)=0

⇒x2016(1−x)(1−x)+y2016(1−y)(1−y)=0⇒x2016(1−x)(1−x)+y2016(1−y)(1−y)=0 (trử theo vế)

⇔x2016(1−x)2+y2016(1−y)2=0⇔x2016(1−x)2+y2016(1−y)2=0

Dễ thấy x2016(1−x)2;y2016(1−y)2≥0x2016(1−x)2;y2016(1−y)2≥0 nên để tổng của chúng bằng 00 thì:
x2016(1−x)2=y2016(1−y)2=0x2016(1−x)2=y2016(1−y)2=0

⇒(x,y)=(0,1),(0,0),(1,1)⇒(x,y)=(0,1),(0,0),(1,1) và hoán vị của nó

Do đó: A=x2019+y2019∈{0;1;2}

Bình luận (0)

Các câu hỏi tương tự
NY
Xem chi tiết
NS
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
BD
Xem chi tiết
H24
Xem chi tiết
KD
Xem chi tiết
DN
Xem chi tiết
MM
Xem chi tiết