Ôn thi vào 10

VN

Cho x,y là các số thực dương thỏa mãn x + 3y ≤ 10. Chứng minh rằng \(\dfrac{1}{\sqrt{x}}+\dfrac{27}{\sqrt{3y}}\) ≥ 10

EC
4 tháng 9 2021 lúc 20:03

Ta có: \(\dfrac{1}{\sqrt{x}}+\dfrac{27}{\sqrt{3y}}=\dfrac{1}{\sqrt{x}}+\dfrac{81}{3\sqrt{3y}}\ge\dfrac{\left(1+9\right)^2}{\sqrt{x}+3\sqrt{3y}}=\dfrac{100}{\sqrt{x}+3\sqrt{3y}}\) (1)

Áp dụng BĐT của Cô-si ta có:

    \(\sqrt{x}=\sqrt{1.x}\le\dfrac{1+x}{2};3\sqrt{3y}\le\dfrac{9+3y}{2}\)

\(\Rightarrow\left(1\right)\ge\dfrac{100}{\dfrac{1+x}{2}+\dfrac{9+3y}{2}}=\dfrac{100}{\dfrac{10+x+3y}{2}}\ge\dfrac{100}{\dfrac{10+10}{2}}=\dfrac{100}{10}=10\)

Dấu "=" xảy ra ⇔ x=1;y=3

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
NH
Xem chi tiết
VN
Xem chi tiết
XX
Xem chi tiết
VN
Xem chi tiết
VN
Xem chi tiết
TL
Xem chi tiết
GG
Xem chi tiết
MD
Xem chi tiết