Violympic toán 7

NT

Cho x+y =100,,x,y>0.Chứng minh rằng \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)\(\ge\)\(\dfrac{1}{25}\)

H24
1 tháng 12 2018 lúc 9:00

Có một phương pháp lớp 7 chứng minh khá hay mà mình mới tìm ra (do lớp 7 chưa học BĐT Svac) (@phynit)

+ Xét x = y,theo t/c dãu tỉ số bằng nhau: thì \(\dfrac{1}{x}=\dfrac{1}{y}\)\(\Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1+1}{x+y}=\dfrac{2}{100}=\dfrac{1}{50}\)

Khi đó:

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{50}+\dfrac{1}{50}=\dfrac{1}{25}\) (1)

+ Xét \(x\ne y\Rightarrow\dfrac{1}{x}\ne\dfrac{1}{y}\left(\ne\dfrac{1}{50}\right)\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}\ne\dfrac{1}{25}\)

Coi \(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{25}\) là độ dài 3 cạnh tam giác,theo BĐT tam giác,ta có: \(\dfrac{1}{x}+\dfrac{1}{y}>\dfrac{1}{25}\) (2)

Từ (1) và (2) suy ra \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{1}{25}\)

Dấu "=" xảy ra khi \(\dfrac{1}{x}=\dfrac{1}{y}\Leftrightarrow x=y\)

Bình luận (0)

Các câu hỏi tương tự
DX
Xem chi tiết
HD
Xem chi tiết
DC
Xem chi tiết
MM
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
DX
Xem chi tiết
HD
Xem chi tiết
YY
Xem chi tiết