Ôn tập toán 8

PP

Cho x^2-y=a

y^2-z=b

z^2-x=c

CMR: Giá trị biểu thức sau ko phụ thuộc vào biến

P=x^3(z-y^2)+y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)

DV
13 tháng 7 2016 lúc 13:21

P = x^3 (z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1) 
= -x^3 (y^2-z) +y^3x-y^3z^2 +z^3y-z^3x^2+x^2y^2z^2-xyz 
= -x^3 (y^2-z)+(y^3x-xyz)-(y^3z^2-z^3y)+(x^2y^2... 
= -x^3 (y^2-z)+xy(y^2-z)-yz^2(y^2-z)+x^2z^2(y^2... 
= (y^2-z)(-x^3+xy-yz^2+x^2z^2) 
= (y^2-z)[-x(x^2-y)+z^2(x^2-y)] 
= (y^2-z)(x^2-y)(z^2-x) = b. a. c ko phụ thuộc vào biến

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
AK
Xem chi tiết
PA
Xem chi tiết
TV
Xem chi tiết
TX
Xem chi tiết
PT
Xem chi tiết
NQ
Xem chi tiết
AA
Xem chi tiết
DT
Xem chi tiết