Đại số lớp 7

NT

cho x1;x2;x3;....;xn. mỗi số bằng 1 hoặc -1. biết rằng tổng của n cặp số x1x2+x2x3+x3x4+....xnx1=0. chứng minh n chia hết cho 4

 

TH
2 tháng 1 2017 lúc 22:51

Xét n tích \(x_1x_2;x_2x_3;...;x_nx_1\)mỗi tích có giá trị bằng 1 hoặc -1 mà tổng của chung bằng 0 nên số tích có giá trị bằng 1 bằng số tích co gia trị bằng -1, và đều bằng \(\frac{n}{2}\). Vậy n chia hết cho 2

Bây giơ ta sẽ chứng minh số tích có giá trị bằng -1 cũng là số chẵn.Xét A=(\(x_1x_2\))(\(x_2x_3\))...(\(x_nx_1\))

Ta thấy A= \(x_1^2.x_2^2...x^2_n\)nên A=1>0, chứng tỏ số tích có giả trị -1 cũng là số chẵn, do đó n chia hết cho 4

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
SN
Xem chi tiết
NB
Xem chi tiết
MT
Xem chi tiết
PM
Xem chi tiết
LD
Xem chi tiết
MA
Xem chi tiết