Theo đề: x +2y =1
<=> x = 1 - 2y
Ta có: A = x2 + 2y2
= (1-2y)2 +2y2
= 1-2y+4y2+2y2
= 1-2y + 6y2
= 6( y2 - \(\dfrac{1}{3}\)y+\(\dfrac{1}{36}\)) + \(\dfrac{5}{6}\)
= 6(y-\(\dfrac{1}{6}\))2 +\(\dfrac{5}{6}\)
mà 6 (y-\(\dfrac{1}{6}\))2 \(\ge\)0 với mọi y
=> 6(y-\(\dfrac{1}{6}\))2 +\(\dfrac{5}{6}\)\(\ge\)\(\dfrac{5}{6}\) với mọi y
=> A\(\ge\)\(\dfrac{5}{6}\)
dấu "=" xảy ra khi A nhận GTNN
<=> y = \(\dfrac{1}{6}\), x = \(\dfrac{2}{3}\)
vậy GTNN của A là \(\dfrac{5}{6}\) khi y=\(\dfrac{1}{6}\), x=\(\dfrac{2}{3}\)
\(\left(x^2+2y^2\right)\left(1+2\right)\ge\left(x+2y\right)^2=1\)(bunyakovsky)
\(\Rightarrow x^2+2y^2\ge\dfrac{1}{3}\)
dấu = xảy ra: \(\dfrac{x}{1}=\dfrac{\sqrt{2}y}{\sqrt{2}}\Leftrightarrow x=y=\dfrac{1}{3}\)