Từ giả thiết \(c\ne0\) và ab, bc là các số có hai chữ số nên a, b, c > 0. Hoán vị các trung tỉ và áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{ab}{bc}=\frac{a+c}{b+c}=\frac{ab-\left(a+b\right)}{bc-\left(b+c\right)}=\frac{9a}{9b}=\frac{a}{b}=\frac{\left(a+b\right)-a}{\left(b+c\right)-b}=\frac{b}{c}\)
\(\Rightarrow\frac{ab}{b}=\frac{bc}{c}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)
Ta có:
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}.\)
\(\Rightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}.\)
\(\Rightarrow\frac{a+b+9a}{a+b}=\frac{b+c+9b}{b+c}\)
\(\Rightarrow\frac{a+b}{a+b}+\frac{9a}{a+b}=\frac{b+c}{b+c}+\frac{9b}{b+c}\)
\(\Rightarrow1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)
\(\Rightarrow\frac{9a}{a+b}=\frac{9b}{b+c}.\)
\(\Rightarrow\frac{a}{a+b}=\frac{b}{b+c}\)
\(\Rightarrow a.\left(b+c\right)=b.\left(a+b\right)\)
\(\Rightarrow ab+ac=ab+b^2\)
\(\Rightarrow ac=b^2\)
\(\Rightarrow ac=b.b\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right).\)
Chúc bạn học tốt!