Hình học lớp 7

TH

Cho t/g ABC vuông A , góc B = 54 độ . Trên cạnh AC lấy D sao cho góc DBC = 18 độ . CM BD < AC

-------cố giúp mk vs -mk đg cần gấp --------

BP
4 tháng 3 2017 lúc 18:05

A B C E D 18 K Kẻ BE là phân giác của góc B, kẻ EK vuông góc BD(K thuộc BD)

Tam giác ABC có : \(\widehat{A}+\widehat{B}+\widehat{C}=180\)

90+54+\(\widehat{C}\)=180
\(\Rightarrow\widehat{C}=180-90-54=36\)

Ta có: \(\widehat{ABD}+\widehat{EBC}=\widehat{ABC}\)

\(\widehat{ABD}+18=54\)

\(\Rightarrow\widehat{ABD}=54-18=36\)

Vì BE là phân giác của góc ABD nên \(\widehat{ABE}=\widehat{ABD}=\dfrac{1}{2}\widehat{ABD}=\dfrac{1}{2}.36=18\)

Xét tam giác ABE và tam giác KBE có:
\(\widehat{A}=\widehat{BKE}=90\)

BE chung

\(\widehat{ABE}=\widehat{EBK}\left(cmt\right)\)

\(\Rightarrow\)\(\Delta ABE=\Delta KBE\)(cạnh huyền-góc ngọn)

=>AE=EK(2 cạnh tương ứng)

Xét tam giác EBK, áp dụng định lí py-ta-go ta có: BE>BK

Ta có: \(\widehat{EBC}=\widehat{EBD}+\widehat{DBE}=18+18=36\)

Xét tam giác EBC có: \(\widehat{EBC}=\widehat{BCE}=36\)=> tam giác EBC cân tại E => BE=EC

Ta có: BE>BK; BE=EC=> EC>BK

Xét tam giác BDC có: \(\widehat{DBC}+\widehat{BDC}+\widehat{BCD}=180\)

\(18+\widehat{BDC}+36=180\)

\(\Rightarrow\widehat{BDC}=180-18-36=126\)

Ta có: \(\widehat{BDE}+\widehat{BDC}=180\)(2 góc kề bù)

=>\(\widehat{BDE}=180-126=54\)

Xét tam giác EKD có: \(\widehat{KED}+\widehat{KDE}+\widehat{EKD}=180\)

\(\widehat{KED}+54+90=180\)

\(\widehat{KED}=180-90-54=36\)

Xét tam giác ABC ta lại có: \(\widehat{KAD}< \widehat{KDE}\)(36<54)

=> KD<EK( cạnh đối diện với góc bé hơn thì bé hơn)

mà EK=AE(cmt)

=>AE>KD

Ta có : BK<EC; KD<AE

=>BK+KD<AE+EC

(hay) BD<AC (ĐPCM)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
MC
Xem chi tiết
MB
Xem chi tiết
CK
Xem chi tiết
HH
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
NM
Xem chi tiết