Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

NQ

Cho tam giác MNP vuông tại M, có góc p < góc n, đường cao MK. Trên nửa mặt phẳng có bờ là đường thẳng NP không chứa điểm M, vẽ tia Nx sao cho tg pnm=pnx. Nx cắt MK kéo dài tại Q.

a) Chứng minh: MNK = QNK .

b) So sánh KM và KN.

NT
24 tháng 1 2024 lúc 7:21

a: Xét ΔNKM vuông tại K và ΔNKQ vuông tại K có

NK chung

\(\widehat{MNK}=\widehat{QNK}\)

Do đó: ΔNKM=ΔNKQ

b: Ta có: \(\widehat{KPM}=\widehat{KMN}\left(=90^0-\widehat{KMP}\right)\)

\(\widehat{KPM}< \widehat{KNM}\)

Do đó: \(\widehat{KMN}< \widehat{KNM}\)

Xét ΔKMN có \(\widehat{KMN}< \widehat{KNM}\)

mà KN,KM lần lượt là cạnh đối diện của các góc KMN,KNM

nên KN<KM

Bình luận (0)