Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho tam giác abc vuông tại a (ab<ac), đường cao ah (h thuộc bc).
a) chứng minh rằng tam giác abh đồng dạng với tam giác cba ;
b) trên tia hc, lấy hd=ha. từ d vẽ đường thẳng song song với ah cắt ac tại điểm e. chứng minh rằng ce.ca=cd.cb ;
c) chứng minh rằng ae=ab ;
d) gọi m là trung điểm của đoạn be, chứng minh rằng dae=ham
cho tam giác abc vuông tại a (ab<ac), đường cao ah (h thuộc bc). a) chứng minh rằng tam giác abh đồng dạng với tam giác cba ; b) trên tia hc, lấy hd=ha. từ d vẽ đường thẳng song song với ah cắt ac tại điểm e. chứng minh rằng ce.ca=cd.cb ; c) chứng minh rằng ae=ab ; d) gọi m là trung điểm của đoạn be, chứng minh rằng dae=ham
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng. 2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
* Không cần làm ạ
Các bạn nhìn hình ảnh xem đây là dùng phương pháp gì để chứng minh thẳng hàng ạ ! ( mình chưa thấy có cái gì liên quan chỉ chứng minh được I trùng với M sao thẳng hàng được ạ )
51.387 lượt xem
TrướcSau
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E
1. Chứng minh rằng △CDE~△AHB
2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng △BHM~△BEC. Tính số đo góc AHM
3. Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC)<!--[if gte ms Equation 12]>HD HD
Cho tam giác ABc nhọn có ha đường cao AD và BE cắt nhau tại H. Tia HC cắt AB tại K. Kẻ DM vuông góc AB tại M, từ M vẽ đường thẳng song song với KE cắt AC tại N. Chứng minh DN vuông góc AC
Cho △ ABC vuông tại A(AC>AB).Vẽ đường cao AH(H∈BC).Trên tia đối của tia BC lấy điểm K sao cho KH=HA .Qua K kẻ đường thẳng song song với AH ,cắt đường thẳng AC tại P
a) Chứng minh :△AKC đồng dang với △BPC
b)Gọi Q là trung điểm của BP. Chứng minh :△BHQ đồng dạng với △BPC
c)Tia AQ cắt BC tại I.Chứng minh \(\frac{AH}{HB}-\frac{BC}{IB}=1\)
cho tam giác ABC nhọn có 2 đường cao AD và BE cắt nhau tại H. Tia HC cắt AB tại K. Kẻ DM vuông góc AB tại M, từ M vẽ đường thẳng song song với KE cắt AC tại N. Chứng minh DN vuông góc AC
Cho △ ABC,điểm I nằm trong tam giác,các tia AI,BI,CI cắt cạnh BC,AC,AB theo thứ tự tự ở D,E,F .Qua A kẻ đường thẳng song song với BC cắt tia CI tại H và cắt tia BI tại K .Chứng minh :
a)\(\frac{AK}{BD}=\frac{HA}{DC}\)
b)\(\frac{FA}{BF}+\frac{AE}{CE}=\frac{AI}{ID }\)
Cho ΔABC vuông tại A (AB < AC), vẽ đường cao AH (H thuộc BC)
a) C/m: ΔABH đồng dạng với ΔABC. Suy ra AB2 = BH.BC
b) Trên tia HC, lấy HD = HA. Từ D vẽ đường thẳng song song với AH cắt AC tại E. C/m: CE.CA = CD.CB
c) C/m: AE = AB