Violympic toán 8

IT

Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D và E thứ tự là hình chiếu của H trên AB, AC.
a) Chứng minh rằng tam giác ABC đồng dạng tam giác HBA.
b) Cho HB = 4cm, HC = 9cm. Tính AB, DE.
c) Chứng minh AD.AB = AE.AC và AM vuông góc DE.
d) Tam giác ABC phải có điều kiện gì để diện tích tam giác ADE bằng 1/3 diện tích tứ giác BDEC.

Mọi người giúp em với ak""""

VX
7 tháng 6 2021 lúc 1:47

B A C E M H D

a, Xét \(\Delta ABC\left(\perp A\right)\) và \(\Delta HBA\left(\perp H\right)\) có \(\widehat{B}\) chung

b,\(\Delta ABC\sim\Delta HBA\) theo a

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Leftrightarrow AB^2=HB.BC\)

                                     \(=4.\left(4+9\right)\)

\(\Rightarrow AB=2\sqrt{13}\) (cm)

Áp dụng định lí py-ta-go trong \(\Delta ABH\):

\(AH=\sqrt{AB^2-BH^2}=6\left(cm\right)\)

Vì \(AH=DE=6cm\)

c, Xét \(\Delta HBA\left(\perp H\right)\) và \(\Delta DHA\left(\perp D\right)\) có \(\widehat{A}\) chung

\(\Rightarrow\Delta HBA\sim\Delta DHA\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AH}{AB}\Rightarrow AD.AB=AH^2\) \(\left(1\right)\)

Tương tự \(\Delta EHA\sim\Delta HCA\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AE.AC=AH^2\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AD.AB=AE.AC\)

-Chúc bạn học tốt-

Bình luận (1)
SN
7 tháng 6 2021 lúc 9:57

image

 
Bình luận (0)

Các câu hỏi tương tự
PM
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
TH
Xem chi tiết
BB
Xem chi tiết