Ôn tập toán 7

TH

Cho tam giác ABC vuông tại A có B=600. Vẽ AH vuông góc vs BC tại H

a) Tính số đo góc HAB

b) Trên cạnh AC lấy điểm D sao cho AD=AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI và tam giác ADI

c) Tia AI cắt cạnh HC tại điểm K. Chứng minh tam giác AHK = tam giác ADK từ đó suy ra AB// KD

d) Trên tia đối của tia HA lấy điểm E sao cho HE=AH. Chứng minh H là trung điểm của BK và 3 điểm D,K,E thẳng hàng

TQ
8 tháng 12 2016 lúc 15:53

\(a.\)

\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)

\(\Delta ABC\)\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )

\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)

\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)

\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)

\(\Delta AHB\)\(\widehat{HAB}+\widehat{B}+\widehat{AHB}=180^0\) ( tổng ba góc của một tam giác )

\(\Rightarrow\widehat{HAB}+60^0+90^0=180^0\)

\(\Rightarrow\widehat{HAB}=180^0-\left(60^0+90^0\right)=30^0\)

Vậy \(\widehat{HAB}=30^0\)

Bình luận (1)
TQ
8 tháng 12 2016 lúc 15:49

Bạn tự vẽ hình nhé

Bình luận (0)
H24
1 tháng 1 2018 lúc 21:03

a)ΔABCΔABC vuông tại AAˆ=900A⇒A^=900

ΔABCΔABCAˆ+Bˆ+Cˆ=1800A^+B^+C^=1800 ( tổng ba góc của một tam giác )

900+600+Cˆ=1800⇒900+600+C^=1800

Cˆ=1800(900+600)=300⇒C^=1800−(900+600)=300

AHBCAHBˆ=900AH⊥BC⇒AHB^=900

ΔAHBΔAHBHABˆ+Bˆ+AHBˆ=1800HAB^+B^+AHB^=1800 ( tổng ba góc của một tam giác )

HABˆ+600+900=1800⇒HAB^+600+900=1800

HABˆ=1800(600+900)=300⇒HAB^=1800−(600+900)=300

Vậy HABˆ=300

Bình luận (0)