Cho tam giác ABC vuông tại A ( AB<AC), trung tuyến AM, , đường cao AH . trên tia đối của MA lấy điểm D sao cho MD=MA
a, tứ giác ABCD là hình gì ? Vì sao
b, Gọi I là điểm đối xứng của A qua B chứng minh BC song song VỚI ID
c, chứng minh tứ giác BIDC là hình thang cân
d, vẽ HE vuông góc với AB tại E và HF vuông góc với AH . Chưng minh AM vuông góc với EF
giúp mk với mk đang cần gấp
a) Xét tứ giác ABCD có:
. M là trung điểm của BC ( AM là đường trung tuyến)
. M là tđ của AD ( gt)
Vậy: ABCD là hbh ( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)
mà \(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A)
--> ABCD là hình chữ nhật ( hbh có 1 góc vuông)
b) Ta có: \(IA\perp AC\)
\(CD\perp AC\)
\(\Rightarrow\) IA // CD
Xét tứ giác BIDC có:
. IA // CD (cmt)
\(\Rightarrow\) IB // CD ( B ϵ IA )
. AB =CD ( cạnh đối hcn ABCD )
mà AB = IB ( tính chất đối xứng)
\(\Rightarrow\) IB = CD ( cùng = AB )
Vậy: BIDC là hbh ( tứ giác có 2 cạnh đối vừa //, vừa = nhau)
\(\Rightarrow\) BC // ID ( cạnh đối hbh)
" đề câu c sai nha bạn"