Hình học lớp 7

H24

Cho tam giác ABC vuông tại A (AB<AC). D là trung điểm BC. Trên tia đối DA lấy M sao cho DA = DM.
a. Chứng minh: Tam giác ABD = Tam giác CMD
b. Chứng minh: AC vuông góc với CM
c. Chứng minh: AC song song BM

TL
15 tháng 12 2016 lúc 20:48

A B C M D

a) Xét ΔABD và ΔMCD có:

AD=MD(gt)

\(\widehat{ADB}=\widehat{CDM}\left(đđ\right)\)

BD=CD(gt)

=> ΔABD=ΔMCD(c.g.c)

b) Đính chính lại đề: CM AB vuông góc vs CM

VÌ: ΔABD=ΔMCD(cmt)

=> \(\widehat{ABD}=\widehat{MCD}\) . Mà hai góc này ở vị trí sole trong

=>AB//CM

c)Xét ΔBDM và ΔCDA có:

DB=DC(gt)

\(\widehat{BDM}=\widehat{CDA}\left(đđ\right)\)

DM=AD(gt)

=>ΔBDM=ΔCDA(c.g.c)

=>\(\widehat{BMD}=\widehat{CAD}\). Mà hai góc này ở vị trí sole trong

=>AC//BM

Bình luận (0)
TL
16 tháng 12 2016 lúc 0:13

đọc nhầm đề lm lại từ phần b

b) Vì: ΔABD=ΔMCD(cmt)

=> \(\widehat{ABD}=\widehat{MCD}\) .Mà hai góc này ở vị trid sole trong

=> AB//CM

Mà: \(AB\perp AC\left(gt\right)\)

=> \(AC\perp CM\)

phần c vẫn như ở dưới

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
PT
Xem chi tiết
LH
Xem chi tiết
TH
Xem chi tiết
GM
Xem chi tiết
PT
Xem chi tiết
DN
Xem chi tiết
NP
Xem chi tiết
TX
Xem chi tiết